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Abstract Absolute asymmetric synthesis (AAS) is the prep-
aration of pure (or excess of one) enantiomer of a chiral com-
pound from achiral precursor(s) by a chemical reaction, with-
out enantiopure chiral additive and/or without applied asym-
metric physical field. Only one well-characterized example of
AAS is known today: the Soai-autocatalysis. In an attempt at
clarification of the mechanism of this particular reaction we
have undertaken empirical and stochastic analysis of several
parallel AAS experiments. Our results show that the initial
steps of the reaction might be controlled by simple normal
distribution (“coin tossing”) formalism. Advanced stages of
the reaction, however, appear to be of a more complicated
nature. Symmetric beta distribution formalism could not be
brought into correspondence with the experimental observa-
tions. A bimodal beta distribution algorithm provided suitable
agreement with the experimental data. The parameters of this
bimodal beta function were determined by a Pólya-urn exper-
iment (simulated by computer). Interestingly, parameters of
the resulting bimodal beta function give a golden section
ratio. These results show, that in this highly interesting

autocatalysis two or even perhaps three catalytic cycles are
cooperating. An attempt at constructing a “designed” Soai-
type reaction system has also been made.

Keywords Absolute asymmetric synthesis . Asymmetric
autocatalysis . Empirical models . Soai reaction . Stochastic
models

Introduction

Chirality [1–5] on the molecular level has two particular fea-
tures: (a) enantiomers of chiral molecules represent an ideal
example of materially realized binary code [6, 7], which how-
ever, (b) are of the same energy [8], leading to equal formation
probability [9–12]. An important practical aspect of these fea-
tures is rooted in the fact that living organisms are using chiral
molecules as only one of the enantiomers. This phenomenon,
called biological chirality [13–18], is a very important condi-
tion enabling the unparalleled selectivity of in vivo biochem-
ical reactions and contributes decisively to the high informa-
tion content of living organisms [6, 7, 19, 20].

The circumstance of equal formation probability of enan-
tiomers in achiral to chiral chemical reactions (in vitro) how-
ever makes it very difficult to obtain enantiomerically pure (or
at least enriched) chiral compounds by usual laboratory tech-
niques, from achiral precursors and without the influence of
asymmetric physical fields [21–23]. Such reaction, called ab-
solute asymmetric synthesis (AAS), would be the dream of all
preparative organic chemists or of chemical industry man-
agers [24]. At present, only one sufficiently documented ex-
ample of AAS is known: the Soai reaction [25–33].

The reaction discovered by Kenso Soai and his coworkers
in 1995, is an alkylation reaction of N-heterocyclic aldehydes,
by di(isopropyl)zinc, as alkylating agent (Fig. 1).
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Soai and his team recognized soon, that this reaction
might be suitable for the realization of AAS, which later
became amply documented [34–37]. In this AAS reaction
one could obtain high enantiomeric outcomes in the prod-
uct, but it could not be said in advance which sense of
chirality will be dominant. This behavior appeared to be a
typical stochastic one and this prompted us to undertake an
empirical and then a stochastic analysis of several parallel
experiments. The results of this study will be summarized
here. Some preliminary summaries of this research were
published elsewhere [38–40].

Empirical approach

The analysis of the shape of enantiomeric excess (ee, Eq. 1)
vs. time curves in the Soai reaction, realized with added more
or less initial quantities of (enantiopure) product [41–43] or in
consecutive catalytic cycles [44, 45], provided a very simple
algebraic formula (Eq. 2) describing the evolution of chiral-
ity [46] in asymmetric autocatalysis. A simple transforma-
tion of this expression led to a closed formula (Eq. 3),
describing the evolution of enantiomeric excess in terms
of the number of consecutive catalytic cycles, applied in a
one-pot manner [47]. These calculations underlined the
exceptional efficiency of this one-pot more-cycles meth-
od, which enabled up to 630,000 times chiral amplifica-
tion in a three-cycle experiment [45].

ee ¼ 100
R−S
S þ R

or ee ¼ 100
S−R
S þ R

in%½ � ; ð1Þ

whereR and S aremolar quantities of the R and S enantiomers of
the chiral compound in question; ee should be always positive.

eeprod ¼ eemax
eestart

Bþ eestart
; ð2Þ

where eeprod is the enantiomeric excess of the product, eestart is
the initial enantiomeric excess of the product at the moment of
the start of the reaction, eemax is the maximum enantiomeric
excess reached with the given system.

eeprod ið Þ ¼ eeimax

ee−1start ið ÞB
i þ Bi−eeimax

B−eemax

; ð3Þ

where i refers to the ith catalytic cycle, others as above.
The formulae in Eqs. 2 and 3 are useful for the calculation

of the limits of the Soai reaction (Figs. 2, 3, and 4) [48]. The
analysis of multiple cycles in a one-pot experimental setup has
shown that at the very beginning the reaction proceeds in a
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Fig. 1 Schematic representation
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non-catalytic stochastic manner [47]. This observation called
our attention to the stochastic features of this particular auto-
catalysis. Results of these studies will be reported later in this
paper.

Several efforts at the kinetic description of the Soai reaction
have been published. One of these, suggested by Buhse [49],
led us to the discovery of chemical oscillations in asymmetric
autocatalysis (Fig. 5a) [50]. In the course of these studies we
also calculated by Eq. 2 the evolution of the enantiomeric
excess, with initial one molecule excess from one of the enan-
tiomeric products. It turned out, that after a very limited num-
ber (6–10) of oscillations (Fig. 5b) an “enantiomeric take-
over” occurs. This result represents a model of one of the
possibilities of the chemical evolution leading to the start of
the biological chirality in very early stages of terrestrial life.

Following the indication obtained under conditions of
chemical oscillations, we calculated the possible numbers of

non-oscillating one-pot consecutive catalytic cycles by Eq. 3
(Fig. 3) [51]. It has been found that reasonable number of
catalytic cycles (20–30, depending on B) are sufficient for
obtaining from very low initial to “macroscopically signifi-
cant” (product) enantiomeric excesses. We shall come back
to the particular role of the very first chiral molecule in an
achiral-to-chiral reaction, later in this paper.

Stochastic approach

As mentioned earlier, there are very strong indications, that
stochastic phenomena play a decisive role in the Soai asym-
metric autocatalysis. We performed a systematic study in this
direction.

For statistical analysis two data sets (of parallel experi-
ments) were available: Set A (SA) with 37 observations [35]
and set B (SB) with 84 measurements [36]. The configuration
of the enantiomers of the product will be defined, as usual, by
R and S molar quantities of these enantiomers will be indicat-
ed by R and S.

We started our analysis [52] under the supposition of the
case, which is the most obvious one at the “first sight”: Hy-
pothesis of symmetric normal distribution, which is the case
usually called “coin tossing” experiment [53–55]. This hy-
pothesis, however, raises some important conditions, which
can also be controlled numerically. Such conditions are:

(a) Themean values (M) of the enantiomeric excesses (ee) in
subsets MR and MS should be equal or very close.

(b) The number of experiments (n), producing excess from
enantiomers R or S (nR or nS) should be equal or very
close.

(c) The (S-R) /(S +R) ratios sould be distr ibuted
symmetrically with respect to zero, defined as S=R.

(d) Standard deviations in subsets SR and SS (σR and σS)
should be equal or very close. The relation │MR -
MS│<3σR or <3σS should be satisfied.

(e) The distribution of the ee values could (should?) be de-
scribed by a binomial distribution, which could be satis-
factorily approximated by a normal (Gaussian)
distribution.

The numerical analysis of these conditions showed the fol-
lowing highly interesting results.

Means (M) showed S-preference in both groups, in SA:
MS>MR by 9.8 %, while in SB: MS>MR by 14.1 %. Since
this difference in SA 9.8 %<3σ, only the difference in SB
(14.1 %>3σ) can be regarded as significant. This result is in
agreement with the screwness values, for SA -0.0693, and for
SB -0.1379, which again shows a clear S-preference for (the
more numerous group of) SB. A similar tendency has been

Fig. 3 Amplification of initial chirality by AAS

Fig. 4 Limits of the Soai reaction in terms of integration constant B in
consecutive catalytic cycles
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observed by data analysis in the sets SA and SB: Here the S-
preference is 5.3 % and 13.3 % respectively.

If the result for the S-preference holds true, it has a far-
going significance. According to one of the theories about
the origin of biological chirality, this origin would be con-
trolled not by stochastic, but by deterministic factors. One of
the most evident deterministic factors could (would?) be the
asymmetry of weak nuclear forces [56]. It was hypothetically
assumed that these forces could give some prevalence to the
formation of one of the enantiomers in an achiral-to-chiral
chemical reaction. This effect, however, is very small (femtoJ
mol−1 to picoJ mol−1 range [57–59]). Several theoretical stud-
ies have been made for detecting the effect of weak nuclear
forces in the thermodynamic and kinetic balance of such re-
actions and their products. These studies initially have shown
some preference for the naturally occurring enantiomers of
chiral biomolecules [60–71], but later, with more refined cal-
culations this preference appeared to be either too small, or—
at least—within the limits of the experimental (or calculation)
error [72–77]. Neither preference for chiral conformations,
e.g., double helix of DNA could be detected [73]. In this
“undecided” situation of the relevant theories, it is of dramatic
importance that the experimental observations, at least in the
case of SB (with 84 parallel experiments), indicate a clear
preference of one of the possible enantiomers. This aspect is
one of the most important theoretical consequences of the Soai
reaction.

Results of the calculations aimed at testing the hypothesis
of possible Gaussian distribution of the ee values obtained
experimentally are in accordance with the above argumenta-
tion. It has been found [52] that a one-sample Kolmogorov-

Smirnov test rejected the probabilistic independence (a basic
property of binomial and Gaussian distributions) and required
a two-sample approach. This result is a clear indication of the
violation of distribution symmetry.

Calculations [52] of the Student t-test and the Welch two-
sample test showed only a very low probability (∼0.008) for
the hypothesis of MR=MS. This again is in agreement with an
asymmetric distribution of the experimental results.

Another attempt at finding a suitable mathematical descrip-
tion of the experimental observations SA and SB was made on
the basis of literature suggestions using a purely stochastic
kinetic model [78–80], based on the hypothesis of symmetric
β distribution. According to our calculations [52], both data
sets, SA and SB show a clear deviation from linearity in a
quantile vs. quantile diagram (Fig. 6).

A one-sample Kolmogorov-Smirnov test resulted no sig-
nificant outcome for SA, but clearly rejected a symmetric β
distribution for SB.

The above outlined negative results raised the question,
whether at all it would be possible to find a continuous law,
with finite mean, which describes the experimental observa-
tions of ee values, under the conditions of absolute asymmet-
ric synthesis? We calculated the expected number of parallel
experiments [53–55] using the formalism of the central limit
theorem (CLT) and the calculations according to Chebysev,
both at p=9.1 % level. CLT requires 128 experiments with
95 % confidence interval of σ2, while 287 parallels for 99 %
confidence. The corresponding, more rigorous, Chebyshev
results were 964 and 5320, respectively. From practical point
of view, the 100 to 300 parallel experiments would still be
realizable (c.f. [35, 36]), but the requirement of 1000 to

a b
Fig. 5 Chemical oscillations in the Soai reaction in continuous-flow stirred tank (CSTR) reactor. (a)Without chiral “additive”. (b) Onemolecule starting
enantiomeric excess, eestart=1.66×10

−22 %)
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6000 parallel experiments is going beyond even the legendary
diligence of Japanese doctoral/postdoctoral research
associates.

Instead of making a great number of experimental efforts,
we started from another viewpoint. We supposed, the fact of
exclusion of simple stochastic formalisms for the description
of the absolute AAS variant of the Soai reactionmight indicate
a more complicated mechanism, which might be described by
a more complex stochastic law. Interestingly, while we were
working on the statistical approach from this point of view,
Ercolani and Schiaffino [81–85], in a couple of excellent pa-
pers arrived qualitatively at the same conclusion, on a very
different basis, by theoretical calculations, in an attempt at
identifying possible intermediates of the Soai autocatalysis.

In an attempt at finding that “more complex stochastic law”
which could correctly describe the experimental observations
which were obtained by the absolute asymmetric synthesis
variant of the Soai reaction, we tried to use a bimodal β
distribution function, h(x), constructed [86] from the combi-
nation of a convex, f(x), and a concave, g(x), component
(Eq. 4), taking into regard the:

h xð Þ ¼ f xð Þ þ g xð Þ; ð4Þ

shape of the histogram (Fig. 7) constructed from the experimen-
tal data. The shape of the h(x) function is shown in Fig. 8.

In this formalism we used x=NS/NT, where NT=NS+NR

and N corresponds to the number of molecules. A more de-
tailed form of Eq. 4 [53] is shown in Eqs. 5 and 6.

h xð Þ ¼ l

l þ m
β a; bð Þxa−1 1−xð Þb−1 þ m

l þ m
β c; dð Þxc−1 1−xð Þd−1

ð5Þ

In Eq. 5 β(…) is the weight factor of the combination of
components f(x) and g(x) in h(x), for example:

β a; bð Þ ¼ 1
Z1

0

xa−1 1−xð Þb−1dx
: ð6Þ

Constants a,b and c,d are shape parameters of the functions
f(x) and g(x) respectively, as well as the l and m parameters
give the mixing ratio of the component functions.

In an attempt at finding suitable values of these parameters
(if our algorithm was correct) we applied the so-called Pólya
urn model [87–89], which is (surprisingly) rarely used in
chemistry [90]. According to the idea of György Pólya one
makes thought experiment(s) designed for following the evo-
lution of the changes of numbers of natural species (atoms,
molecules, microorganisms, etc.). The “thought experiment”
can be done also materially, or by computer too. In this

Fig. 6 Quantiles of beta-
distribution vs. quantiles of S/T in
S(A) and S(B)

Fig. 7 Histogram of the enantiomer S of data populations in systems SA
and SB
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experiment one takes a (one or more) container, called “urn”,
puts in it material objects, called “spheres” or “marbles” with
different external features, “colors”, and defines an algorithm
for proceeding with these. According to this algorithm one
takes one (or more) from these marbles from one (or more)
of the urns, notes its color and according to rules of the algo-
rithm adds marbles to this (these) urn(s) and observes after
several such operations the changes in the composition(s) of
colored marbles in the urn(s). Obviously it is easy to follow
this process by computer, as we have done it too [40, 86, 91].

We studied a Pólya urn variant with one urn and two pop-
ulations of marbles:

(a) The first population consisted of large numbers of two
“achiral” species, A and Z0, (these numbers were chosen
as 1 mol=6×1023 marbles each) and a few pieces of
“chemical”, Z”, and “chiral inductor” S and R marbles.
Considering the chemical background (Fig. 1) the fol-
lowing two “reactions” could display (Eqs. 7 and 8):

Aþ Z0 þ Z”þ S→ 2Sþ Z”þ Z ð7Þ

Aþ Z0 þ Z”þ R→ 2Rþ Z”þ Z ð8Þ

The constants a and b of Eq. 5 were related to the
staring numbers of species S and R, consequently the
sum a+b will define the value of Z (chemical catalyst)
and Z” will be “imported” from the second cycle.

(b) Mutatis mutandis, the second population was chosen ac-
cording to similar rules and resulted Eq. 9 and 10:

Aþ Z0 þ Zþ S”→ 2Sþ Zþ Z” ð9Þ

Aþ Z0 þ Zþ R”→ 2Rþ Zþ Z”: ð10Þ

Similarly as above the values of constants c and d are
related to the starting numbers of species S” and R”.

The following algorithms were defined. For the first
population: three marbles are drawn casually and if A is
drawn together with S and Z”, then this A gets exchanged
for (or more “chemically”: transformed to) an S marble and
one Z0 gets exchanged for (transformed to) a Z marble. The
rule is analogous if A and Z” are drawn together with an R
marble. For the second population: Again three marbles are
drawn casually and if A is drawn together with S” and Z, then
the A marble gets exchanged for (transformed to) an S” mar-
ble and one Z0 gets exchanged for a Z” unit. The rule works
similarly with starting R” (Eq. 10).

Several combinations of the constants a, b, c, and d were
screened by χ2-test [92]. The closest fit was obtained by the
combination a=2, b=10, c=5, d=1, yielding df=9 (where df
is for degree of freedom) in the χ2 –test, on a 95 % level
(ε=0.05), χ2

crit. = 16.9, while the statistics for Eq. 4 with
respect to SA resultedχ2

A=6.64, for SB gaveχ
2
B=10.18. Both

χ2 values aremuch lower than the critical value, indicating an
excellent fit to the experimental data. Small changes in these
“optimum” parameters resulted very large changes in the
goodness of fit. Sets of these parameters with a=2, b=12,
c=6, d=1; or a=2, b=6, c=3, d=1 gave χ2 values of 20.3
and 24.9, respectively, both of which are significantly higher
than the critical value.

The values of the coupling parameters l and m were gener-
ated inherently in this model from the ratios l/(l+m) andm/(l+
m). Since the ratio of the numbers of Z and Z” follows the
evolution of a Fibonacci series [93–95] in these two popula-
tions, it will lead to a golden section ratio [96, 97]. The ap-
pearance of the golden section ratio in the quantitative descrip-
tion of the Soai reaction, might give an indication toward the
not yet fully understood particular character of this very im-
portant autocatalysis. In other words, one could suspect, that
the extreme high selectivity and efficiency of the Soai reaction
could be due to the cooperation of more than one catalytic
cycle which are the most efficient if acting in the golden sec-
tion ratio.

Considering all of these results and considerations the nu-
merical form of the h(x) function is as follows:

h xð Þ ¼ 0:382 ⋅ 110x 1–xð Þ9 þ 0:618 ⋅ 5x4: ð11Þ

Fig. 8 Graphical representation of the combined bimodal beta
distribution, h(x), according to Eqs. 4, 5, and 6, with the computed a, b,
c, and d parameters (see text)
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The bimodal β distribution diagram is shown in Fig. 8
drawn on the basis of the numerical values in Eq. 11. The
shape of this curve shows an excellent agreement with the
shape of the the ee histogram in Fig. 7.

It appears, thus, that the stochastic analysis of the Soai
reaction presented above gives a satisfactory description in
the form of a bimodal β distribution function. One of the most
interesting features of this result is, that it indicates two
cooperating catalytic cycles as the main molecular events in
the Soai asymmetric autocatalysis, but the cooperation of the-
se cycles materializes in a third catalytic cycle as shown in
Fig. 9.

These “superficial” observations provide, however, no
mechanistic picture, give only a starting point for mechanistic
considerations.

A few points regarding the above stochastic picture should
still be shortly summarized.

(a) The analysis of the ee data in the AAS variant of the Soai
reaction is (obviously) of thermodynamic nature, not
allowing kinetic considerations. Kinetic studies on the
Soai reaction did not yet reach such a conclusion, which
could be regarded as the final solution of the problem
[49, 78–80, 98–104].

(b) The experimental data sets SA and SB obey the same
distribution laws, consequently: Even if the experimental
conditions are somewhat different [35, 36], the decisive
molecular events should be the same in these two groups
of parallel experiments.

(c) The fact, that in the “elevated” stage the Soai reaction
(without additive) obeys a bimodal β distribution law,
opens the possibility, that in the very beginning stage
the reaction starts with molecular events obeying normal
distribution, as pointed out elsewhere [47, 51].

(d) The recent theoretical results about the possibility of “in-
termediates in equilibrium” [81–85] (according to our
interpretation this means more than one intermediate)
appears to be in agreement with the above outlined result

concerning themore than one catalytic cycle cooperating
in the Soai autocatalysis.

(e) Cooperating catalytic cycles represent the core hypothe-
sis on the origin of terrestrial life, according to the theo-
ries of Gánti [105–109] and Eigen [110–112].

Single molecule chirality. The Caglioti principle

Empirical mathematical analysis of the Soai autocatalysis pro-
vided an indication of the normal distribution (“coin tossing”)
character in the very early stage of the reaction [47]. This
result prompted us to investigate somewhat nearer the condi-
tions in systems with only a few molecules of both enantio-
mers of a chiral substance [22].

If an achiral-to-chiral reaction takes place, a 1:1 mixture of
the two enantiomers is formed according to all laboratory
experience of preparative chemistry (except the Soai reaction
[34–37]). This mixture is called “racemate”, which, however
is not a chemical category, being only a mixture of two sub-
stances. It has been recognized very early (1898), that in such
mixtures the number of such enantiomers is controlled by laws
of probability [9–11]. Elementary combinatorial calculations
[22] show very interesting results in this respect. In a system
containing only ten molecules from the two enantiomers, the
probability of having a 5:5 mixture (which is the only combi-
nation being a “true racemate”!) has a probability of only
24.6 %, while various mixtures with enantiomeric excesses
from one or the other enantiomer are formed with 75.4 %
probability. Even more, the probability of the formation of a
“pure” enantiomer, that is 10:0 or 0:10, is 0.2 %. At 100
molecules these numbers are 7.7 %, 92.3 % for the first two
situations, respectively, while the probability of a pure enan-
tiomer is only 1.58×10−28 %, which is negligible. At 1000
molecules these values are 2.5 %, 97.5%, and 1.87×10−299 %,
while in a system consisting of 108 molecules (cca. femtomol
level) the probability of the 1:1 mixture practically vanishes
too, with its 0.008 % probability. The numbers of molecules
considered above, are even numbers, in the case of any odd
number (50 % of all cases!!!), the formation of a “true race-
mate” is impossible, at least one molecule excess should be
present from one of the enantiomers. These considerations
have some important consequences:

(i) In all “racemates” of practical size (>femtomol) the mix-
ture is not a true racemate, in overhelming majority of the
cases the sample contains more-less excess from one of
the enantiomers. In the case reactions with such extreme
sensitivity as the Soai reaction [34–37, 41–43, 45], this
should be seriously considered.

(ii) In systems of low molecule number very high enantio-
meric excesses are “usual”, with consequences of their

Fig. 9 Schematic representations of the cooperating catalytic cycles in
the Soai reaction on the basis of the bimodal β distribution hypothesis
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chiral induction power, as found in the early stage of the
Soai reaction [47].

These considerations brought Luciano Caglioti (University
“La Sapienza, Rome) to the idea, that if only one chiral mol-
ecule is present in a very diluted system, this will possess, per
definitionem, 100 % enantiomeric excess. This is what we call
Caglioti principle. The basic idea of a single chiral molecule
was then tested from various aspects [51, 113–116]. Here we
mention only one: the calculations by Eq. 3 for finding the
possibility of consecutive “one-pot” multi-cycle Soai reaction
experiments for amplifying one molecule initial excess from
one of the enantiomeric autocatalysts. These calculations
(Fig. 10) enabled to determine the number of catalytic cycles
necessary for amplifying this one molecule excess to macro-
scopically significant ees, by such Soai reaction types, which
have medium to high B constant [48]. It is clearly visible from
Fig. 10, that the number of cycles necessary to realize this
enormous “jump” of chirality is reasonable under common
laboratory conditions. These results too, demonstrate the ex-
ceptional efficiency of the Soai asymmetric autocatalysis. The

idea of the Caglioti principle was also later discussed by others
[117–119].

Toward designed Soai-type systems?

Both intellectual intuition and several pieces of experimental
evidence suggest, that chemistry in terrestrial living organisms
is working in many aspects according to principles of the Soai
reaction. However, in spite of world-wide efforts of the scien-
tific community — no comparable reaction has been found
yet. The only hope is coming from the University Erlangen-
Nürnberg [120–124] and some others [125, 126], through
reports on Mannich and aldol reactions, which are in several
aspects similar to the Soai autocatalysis. These reactions,
however, were discovered a few years ago accidentally, iden-
tified as autocatalysis and worked out by this excellent
reasearch team in Germany and some other authors.

A few years ago the catalysis team at the University of
Modena started cooperation with the University of Debrecen,
with the bold goal, to construct a Soai type reaction system.

Fig. 10 Amplification of one molecule enantiomeric excess in consecutive one-pot Soai reaction cycles to macroscopically significant ees
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As the starting point the experience of the Debrecen group
with the use of Cr(II) complexes in reduction of organic func-
tional groups [127–129] was utilized, with the modification,
that for N,O-donor ligands we chose pure enantiomers of ami-
no acids. This reducing systemwas first tested in the reduction
of various ketonic substrates [130–132], then with ketoximes
[133]. In both cases medium to high enantiomeric excesses
were found in the products. On the basis of this experience we
tested the reduction of α-oximino carboxylic acids, which are
direct precursors of the (natural) α-amino acids (Fig. 11) [134,
135].

In fact, these reactions resulted such amino acid products,
which were substantially enriched in one of the enantiomers.
The results are now (still?) far from being autocatalytic, but
we are working on this aspect. Some relevant analytical prob-
lems were already successfully resolved [136–138].

Conclusions

The discovery of the first asymmetric autocatalysis byKenso
Soai and coworkers, in 1995, which had since then an enor-
mous impact on theoretical and preparative chemistry (the
number of independent citations to the papers of the Tokyo
University of Science group is over 10,000). Numerous pre-
parative, theoretical and biochemical studies have been

induced by this discovery. In the present paper we summa-
rized only a small part of this research, performed mostly in
Modena, Rome, Budapest, and Debrecen, dealing principally
with the absolute enantioselective synthesis variant of the Soai
reaction. The results, mathematical and preparative models,
obviously, do not resolve all problems regarding the Soai au-
tocatalysis, but in certain aspects contribute to the clarification
of some points relevant to this important reaction:

(a) Simple empirical formulae enable the quantitative de-
scription of the evolution of the ee in the course of the
reaction, without mechanistic speculations.

(b) These empirical formulae allow to calculate the number
of cycles in consecutive reaction chains realized in a one-
pot manner, which are necessary for obtaining practically
significant (>50 % ee) optical yields.

(c) Statistical studies have shown that the Soai autocatalysis
starts with (most probably non-catalytic) reaction steps
which can be described by normal (Gaussian)
distribution. This phase is operating in that stage, where
the first few chiral molecules are formed. Special impor-
tance can be attributed to the formation of the very first
chiral molecule from achiral precursors (Caglioti
principle).

(d) The statistical studies, however, indicated that after the
very initial stage, the reaction becomes catalytic, which

Fig. 11 Enantioselective synthesis of α-amino acid by Cr(II) complexes of (natural) α-amino acids
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appears to be the result of the cooperation of more than
one (most probably three) catalytic cycles.

(e) The empirical and statistical models of the Soai reaction
allowed an attempt at the construction of a Soai-type
reaction system on the basis of chiral natural amino acid
complexes of chromium(II). This reaction system allows
to transfer chirality of the ligand amino acids to product
amino acids, which were obtained by reduction with
Cr(II) ions from an achiral precursor, but its efficiency
is (yet?) far from the efficiency of the Soai autocatalysis.
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